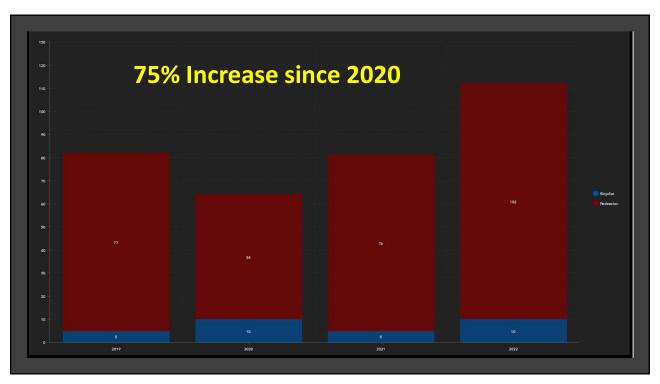


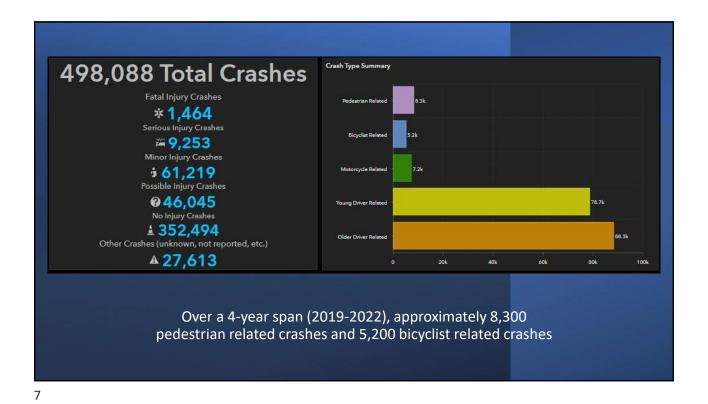
DLt Rick Wolanski

50 Maple Street Milford, MA (774) 405-7601 Richard.Wolanski@pol.state.ma.us

- Member of the Massachusetts State Police for 18 years
- Assigned to CARS since 2012
- Current position is Section Commander of CARS
- Investigated 300+ fatal/serious injury crashes

Project Goals


- Train and certify current members of CARS in crash investigation involving pedestrian and bicyclists
- Train and certify current members of CARS in recognizing, analyzing, and measuring the human response in dynamic crash situations
- Provide up-to-date, calibrated equipment to all members of CARS to precisely measure roadway value
- Provide training/familiarization for all CARS members for new equipment
- Creation of an indexed database incorporating roadway measurements


3

Proposal

- Host a forty (40) hour course in Pedestrian & Bicycle Crash Investigation
 - Total cost \$15,000
- Host a forty (40) hour course in Advanced Human Factors
 - Total cost \$22,000
- Purchase twenty-four (24) GPS-based portable accelerometers with cases
 - Total cost \$18,788.64
- Purchase twenty-six (26) calibrated drag sleds and hand scales
 - Total cost \$25,551.50
- Total project cost: \$81,340.14

Reported Crashes YTD

Reported Fatalities YTD
(FARS)

21,562
65

As of: Tue Mar 21 2023
As of: Mon Mar 20 2023
(so far...)

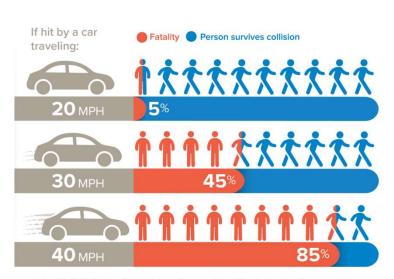
Reported Fatalities YTD
(FARS)

As of: Mon Mar 20 2023

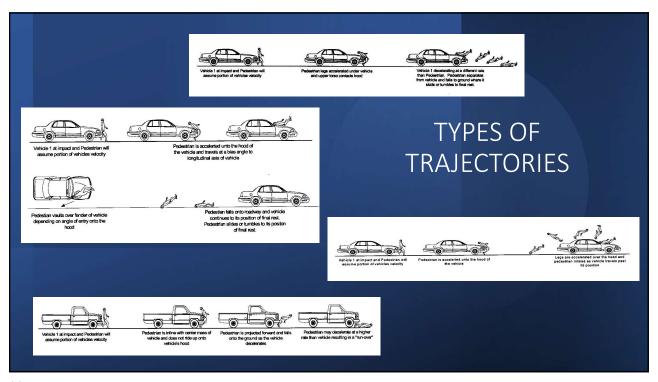
Reported Bicyclist Crashes
YTD

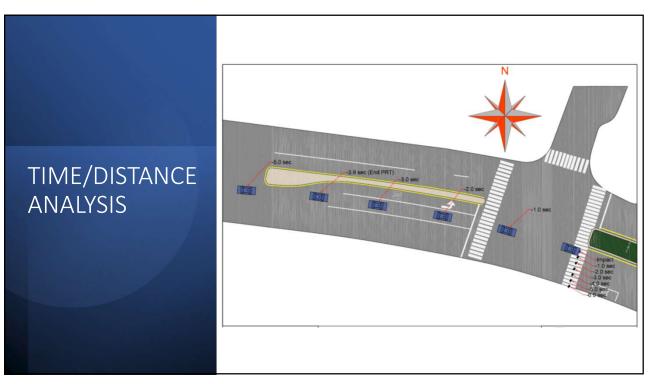
371
84

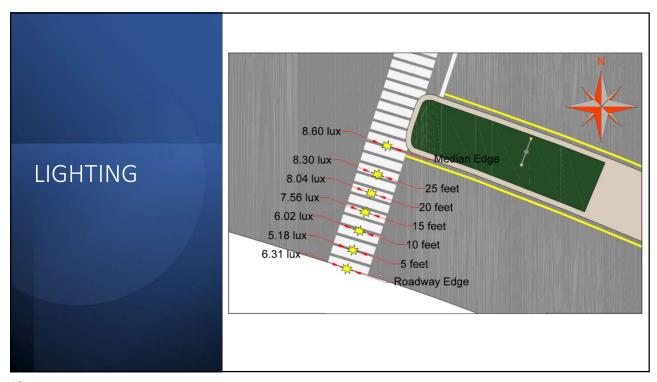
As of: Tue Mar 21 2023
As of: Tue Mar 21 2023

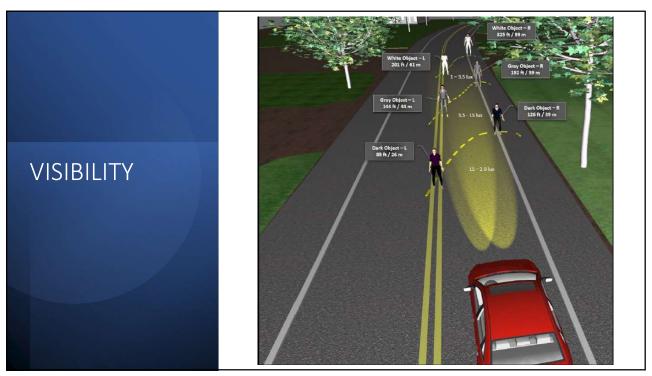

Special Problems in Crash Investigations

- Increasingly, reconstruction resources are going to investigating pedestrian crashes
- These investigations are complicated and lengthy, often involving several elements of analysis
- Crash dynamics in pedestrian crashes are very different than crashes involving two objects of comparable mass and velocity

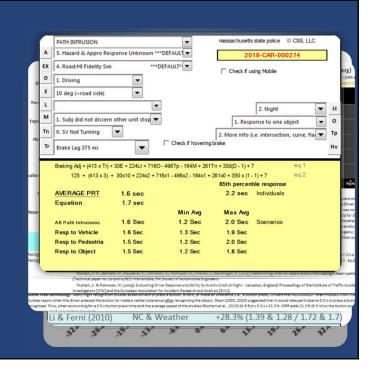

9


Pedestrian Crashes


- A growing problem, particularly in urban areas
- Lower speed crashes can still result in serious or fatal injuries



National Traffic Safety Board (2017) Reducing Speeding-Related Crashes Involving Passenger Vehicles. Available from: https://www.ntsb.gov/safety/safety-studies/Documents/SS1701.pdf


Tying in the Human Factor

- Critical to any crash, and particularly in pedestrian crashes, in incorporating the way humans behave when confronted with a critical, split-second decision
- This becomes a life-or-death decision when a driver encounters a pedestrian as a hazard
- Extensive research has been done over many years to examine and quantify human reactions
- The Human Factors class incorporates these research elements to apply to specific crashes under investigation

15

THE HUMAN FACTOR

- Gap Acceptance
 - When will average drivers engage when there is a gap in traffic?
- Headlight Analysis
 - What will the headlights illuminate?
- Pedestrian walking/running speeds
- Sun Position
- Night Recognition
- Perception-Reaction Time

Why These Classes?

- Understanding the dynamics at play is essential to correctly investigate these crashes and, ultimately, determine cause
- As pedestrian crashes become more frequent, more of CARS resources are dedicated to these investigations
- Without understanding HOW these crashes happen, we will be unable to enact policies to PREVENT deaths in the future

17

Why These Classes?

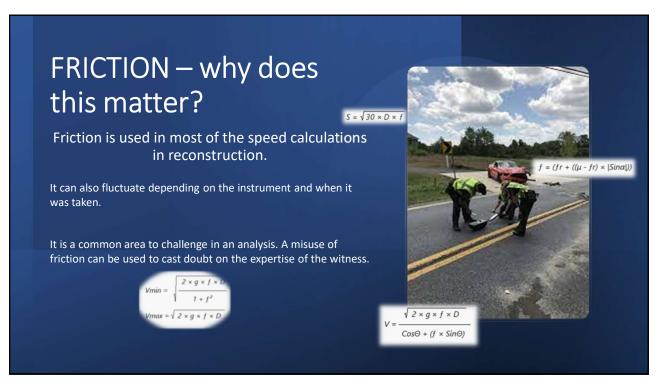
AS OF TODAY:

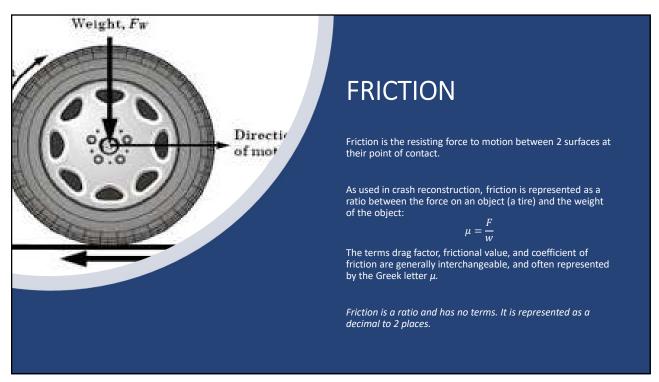
- 9 CARS Troopers (out of 26) have received the Pedestrian/Bicycle class (only 6 within the last 5 years)
- 9 CARS Troopers (out of 26) have received the Human Factors class (last held in 2018)
- Both fields of study are growing rapidly, and contemporary approaches & techniques would be invaluable for those of us that have already sat for the training

CLASS DESCRIPTIONS

Pedestrian/Bicycle Crash Investigation - Level 1

- Offered by the Institute of Police Technology & Management (IPTM)
- 40 hours course with a certification upon completion
- Addresses the special dynamics involved in pedestrian and bicycle traffic crashes
- Topics Include:
 - Pedestrian crash problems
 - Pedestrian impact dynamics
 - Types of data: objective, subjective and performance
 - · Collection of data
 - Pedestrian conspicuity
 - Reaction time/human factors
 - Reconstruction techniques
 - · Bicycle collision analysis
 - Hit and run investigation techniques


19


CLASS DESCRIPTIONS

Advanced Human Factors

- Offered by the Institute of the Driver Research Institute
- 40 hours course with a certification upon completion
- Addresses human perception and response factors in crash investigation
- Topics Include:
 - Methodology and application of Interactive Driver Response Research (I.DRR) software
 - Perception/response factors
 - Sun position (solar glare)
 - Night recognition
 - Weather
 - Path intrusion
 - Gap Acceptance
 - Lead Vehicle
 - Avoidance
 - Current research and methodology regarding pedestrian walking speeds, headlight analysis, and vehicle spray

3 WAYS TO OBTAIN FRICTION VALUES

- · Measure on scene with an accelerometer
- Measure on scene with a drag sled
- Obtain value from a table (usually derived from research and testing)

ACCELEROMETER

- The best (most reliable) way to measure friction is with an accelerometer
 - An accelerometers is a sophisticated device that measures the change in velocity in a moving object
 - The accelerometer can then calculate:
 - Acceleration rates
 - Braking efficiency
 - Frictional value of the roadway
- The Vbox Sport uses GNSS geolocation coordinates to measure change in distances over time
- They can be mounted on vehicles, motorcycles, even bicycles
- They transmit data to a smart phone app
- They are a common and accepted measuring device in the field of Reconstruction
- Purchased from Racelogic, Farmington Hills, MI

25

DRAG SLED

- When the accelerometer is not available (or not practical) a drag sled is used
- The "sled" is dragged across the roadway with a scale; the scale tells us the pounds of force, and that is divided by the weight of the sled
- Friction is not particularly sensitive to changes in tire composition, as much as roadway surfaces/conditions, which makes drag sleds a reliable alternative
- At present, just over half of CARS Troopers have drag sleds which are all DIY and uncalibrated
- The purchase of factory-made sleds and scales will have the advantage of being
 - Properly calibrated
 - A consistent weight and composition
 - Industry-accepted alternative to the accelerometer
- · Purchased from MEDTECH Forensics, Tallahassee, FL

ROAD SURFACE	DRY	< 30 mph	DRY	> 30 mph	WET	< 30 mph	WET	> 30 mph		
	From	To	From	То	From	To	From	То		
PORTLAND										
CEMENT										
New, Sharp	0.80	1.20	0.70	1.00	0.50	0.80	0.40	0.75		
Traveled	0.60	0.80	0.60	0.75	0.45	0.70	0.45	0.65		DATA TABLES
Traffic Polished	0.55	0.75	0.50	0.65	0.45	0.65	0.45	0.60		DI (II (II (DEES
ASPHALT/TAR										
New, Sharp	0.80	1.20	0.65	1.00	0.50	0.80	0.45	0.75		
Traveled	0.60	0.80	0.55	0.70	0.45	0.70	0.40	0.65		
Traffic Polished	0.55	0.75	0.45	0.65	0.45	0.65	0.40	0.60		
Excess Tar	0.50	0.60	0.35	0.60	0.30	0.60	0.25	0.55		
GRAVEL										
Packed, Oiled	0.55	0.85	0.50	0.80	0.40	0.80	0.40	0.60	•	Least reliable source
Loose	0.40	0.70	0.40	0.70	0.45	0.75	0.45	0.75		
CINDERS									•	Usually give a range
Packed	0.50	0.70	0.50	0.70	0.65	0.75	0.65			0 1 1000 100 100
Packed	0.50	0.70	0.50	0.70	0.03	0.75	0.05			Can be difficult to determine origin
ROCK										and/or accuracy
Crushed	0.55	0.75	0.55	0.75	0.55	0.75	0.5=			·
	0.00		0.00		0.00	0.1.0			•	Roadway composition can vary
ICE										significantly from region to region
Smooth	0.10	0.25	0.07	0.20	0.05	0.10				- 5-B-III-Cartery From FeBioti to FeBioti
SNOW										
Packed	0.30	0.55	0.35	0.55	0.30					

LOCALLY SOURCED DATA TABLES

- By using this new equipment, CARS Troopers can begin recording and compiling measurement data
- A number of factors can affect frictional values, such as
 - Time of day
 - Time of year
 - Weather
 - · Road surface
 - Temperature
- Last year, CARS responded to and investigated 458 crashes
- Combined with data points already collected in every crash investigated, we can very quickly build a significant source of reliable data that can be catered to specific crash conditions

29

CARS DATA TABLES

- Frictional data collected from investigations will be collected at the conclusion of each investigation.
- A data table will be created, to include
 - Measured frictional value
 - Method used to acquire the measurement
 - Roadway characteristics
- The expectation is that when the MSP begin a new reporting system (migrating from RAMS to ACISS) the new system will support a data field specifically for these measurements

